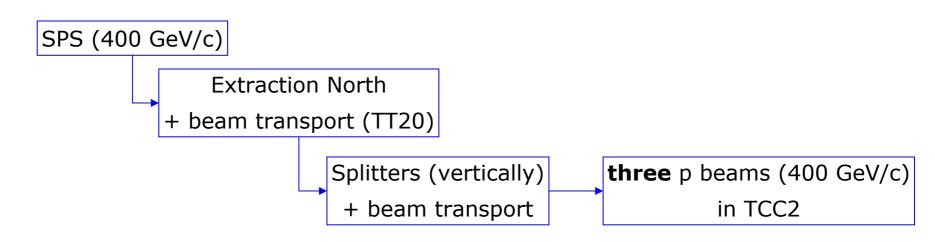
The EHN1 Beams

Outline

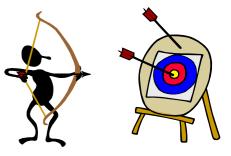
General layout of the North Area The target station Principles of the EHN1 beams (N.D.)

Particles and beams

tertiary beams


Operational aspects

beam tuning

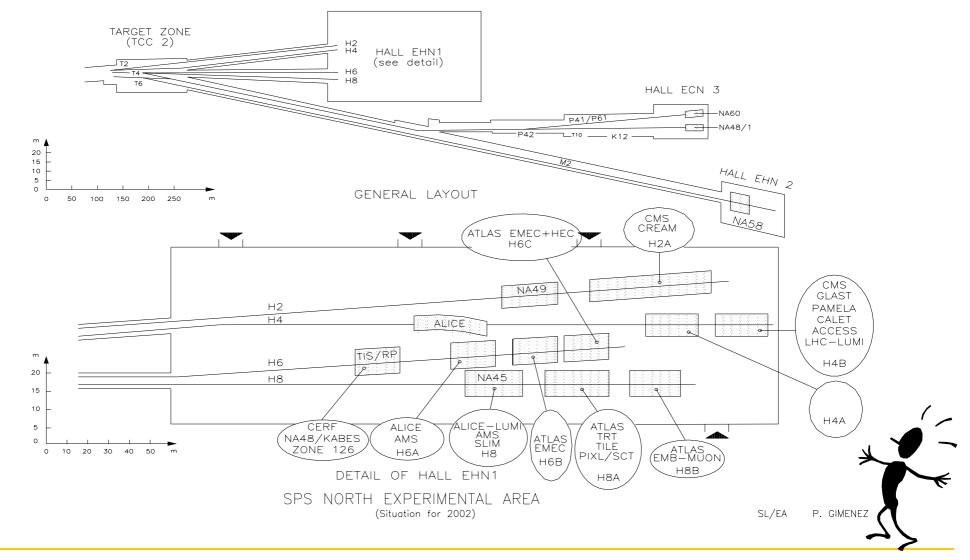


Ilias Efthymiopoulos AB/ATB-EA SPS/EA Training Lecture Program March 2003

General - The North Experimental Areas at the SPS

- The three proton beams are directed onto the **primary targets**: T2, T4, T6
- The proton intensity on each target can go up to 10¹³ protons/pulse
 - limited by target construction (i.e. cooling, etc.)
- Possible options:
 - primary proton beam with high intensity in ECN3 (even without the T4 target)
 - attenuated primary proton beams
 - **ECN3** T4: P41/P42, T6: P61/P62
 - EHN1 T2: H4, T4: H8
 - secondary beams:
 - EHN1 T2: H2 & H4, T4: H6 & H8
 - **ECN2** T6: M2

The EHN1 beams


Target	Beam	Characteristics		
Т2	H2	 High-energy, high-resolution secondary beam. Alternatively can be used to transport: attenuated primary beam of protons, electrons from γ-conversion, polarized protons for Λ decay, enriched low-intensity beam of anti-protons, or K⁺ <u>Main parameters</u>: P_{max}= 400 (450) GeV/c, Acc.=1.5 µSr, Δp/p_{max}= ±2.0 % 		
	H4	High-energy, high-resolution secondary beam. Alternatively can be used to transport: primary protons, electrons from γ - conversion, polarized protons for Λ decay, enriched low-intensity beam of anti- protons, or K ⁺ <u>Main parameters</u> : P _{max} = 330 (450) GeV/c, Acc.=1.5 μ Sr, $\Delta p/p_{max}$ = ±1.4 %		
T4	H6	High-energy secondary beam. <u>Main parameters</u> : P_{max} = 280 GeV/c, Acc.= 2.0 µSr, $\Delta p/p_{max}$ = ±1.5 %		
	H8	High-energy, high-resolution secondary beam. Alternatively can be used to transport an attenuated primary proton beam <u>Main parameters</u> : P_{max} = 400(450) GeV/c, Acc.= 2.5 µSr, $\Delta p/p_{max}$ = ±1.5 %		

... The EHN1 beams

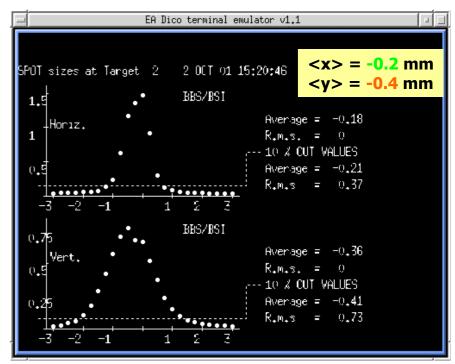
- The North Area was originally designed to house long-lasting experiments
 - demands for high quality of beams: high intensity, high energy, high resolution
- In the recent years most of the users are "tests", in particular of LHC detectors
 - H2, H4 beam lines mainly CMS
 - H6, H8 beam lines mainly ATLAS
 - H4, H6 beam lines ALICE tests
 - The test users have very different requirements from the big experiments
 - wide energy range from the highest accessible the the very low energies,
 - sometimes high (or very high) rates
 - all possible particles with as good as possible separation and identification and all that during the few (or even one!) weeks of their allocated time!
 - Few heavy-ion experiments and heavy ion users are also present
 - NA49 in H2 and NA45 in H6
 - tests for ALICE detectors (H8, H4, and/or H2)

Rapidly changing environment, quite demanding on beam conditions

21/03/2003

The target box

The target head



T2 target								
Position	H (mm)	V (mm)	L (mm)	Material				
0	EMPTY							
1	160	2	300	Be				
2	160	2	500	Be				
3	160	2	180	Be				
4	160	2	100	Be				
5	120	2	40	Be				

T4 target								
Position	H (mm)	V (mm)	L (mm)	Material				
0	EMPTY							
1	160	2	300	Be				
2	3	2	300	Ве				
3	160	2	200	Ве				
4	160	10	100	Ве				
5	120		40	Pb				

Beam position monitors

TBIU (upstream) , TBID (downstream)

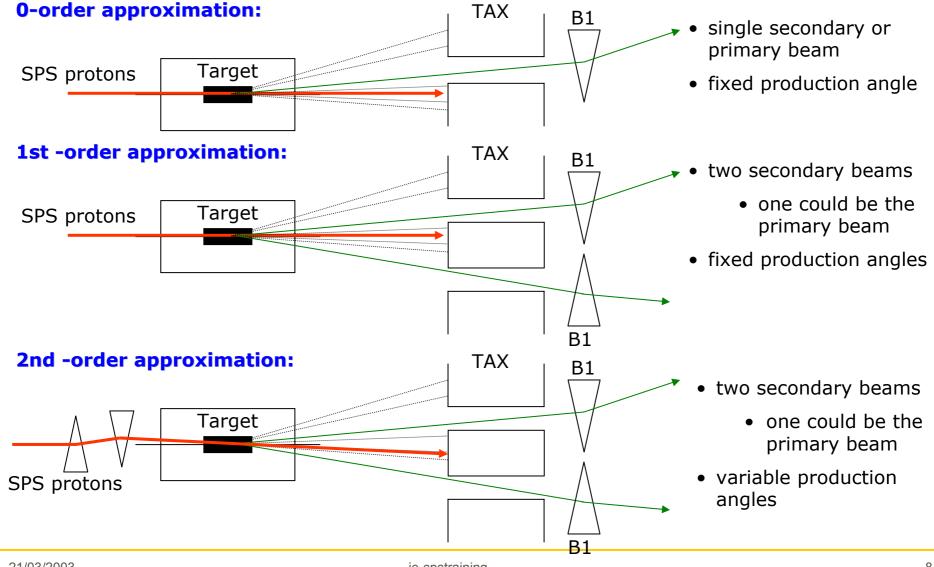
- mounted on same girder as the target head for better alignment
- beam steering onto the target using BSM located ~30m upstream of the target

Wobbling

AIM

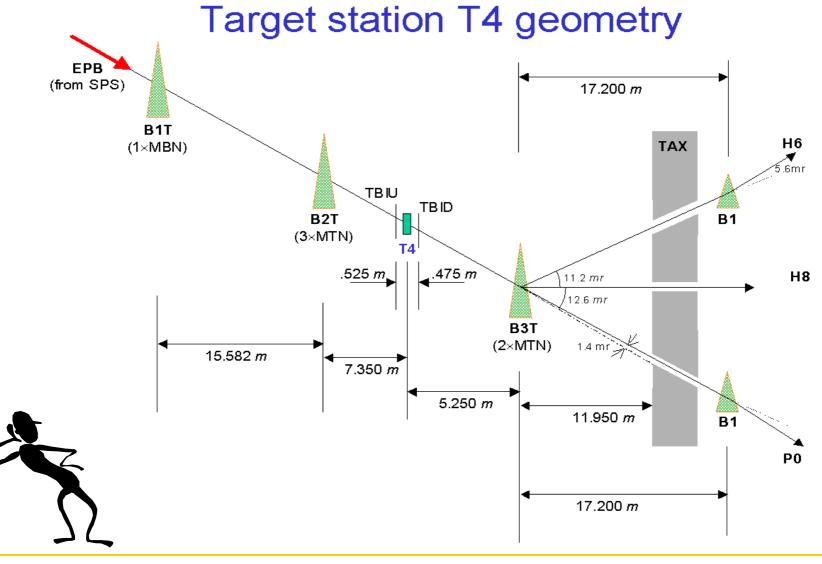
- Have the maximum flexibility in the use of a given target station
- Produce "several" secondary beams from the same target
 - when the primary beam hits the target basically "all" the particles are produced in a large variety of angles and energies
 - the most energetic particles are in the forward direction

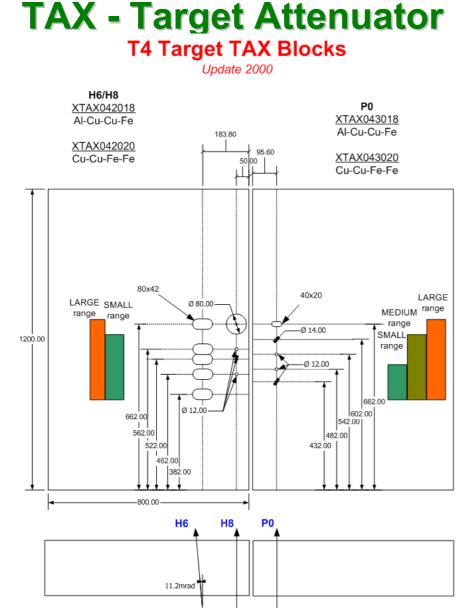
should not forget:

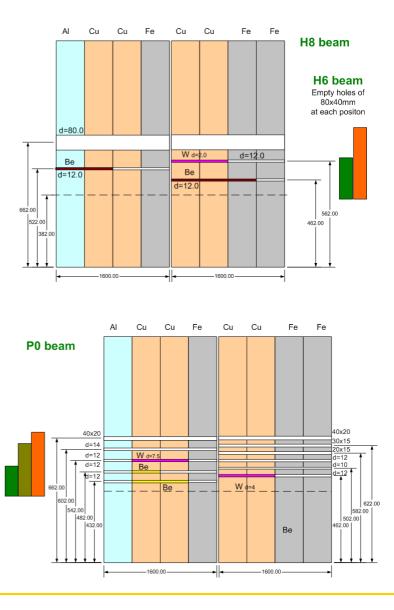

- The very intense primary proton beam has to be dumped in a controlled way
- The secondary beams of the chosen momentum have to go in the directions foreseen by the designer (i.e. inside the vacuum tube of each beam line)

Solution:

"wobbling" : hit the target under variable angle



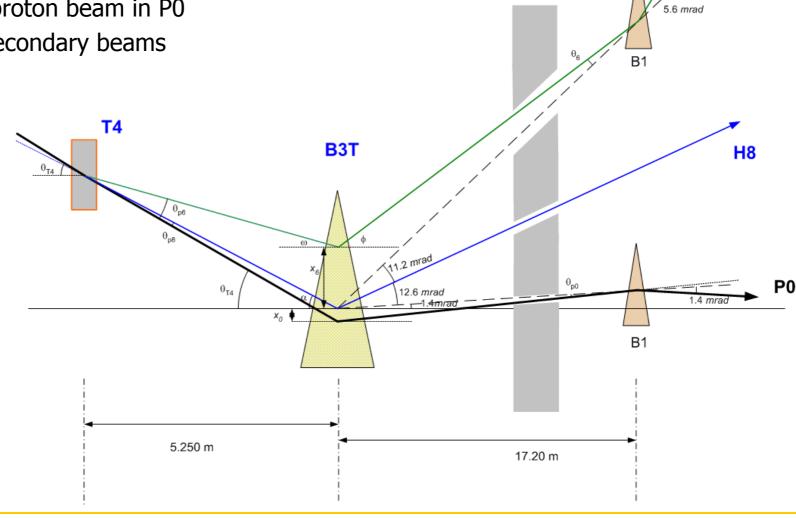

station The target


T4 target wobbling

21/03/2003

ie-spstraining

The target station


21/03/2003

ie-spstraining

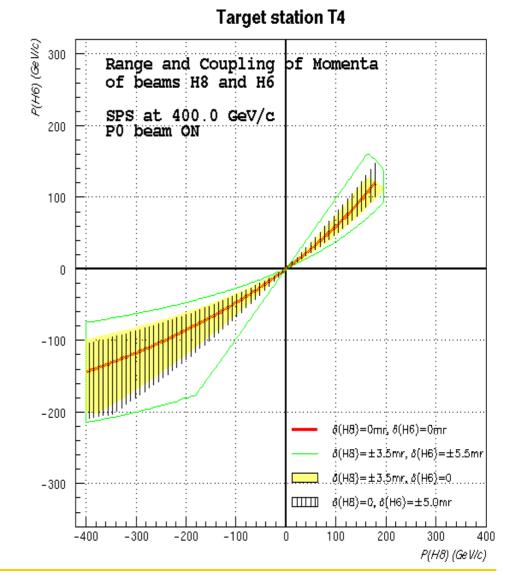
Wobbling - T4 target

Example 1:

- primary proton beam in P0
- H8, H6 secondary beams

H6

... Wobbling - T4 target


Example 1:

- primary proton beam in P0
- H8, H6 secondary beams

Presently the most frequent case

"standard wobbling" settings:

H8	H6		
Energy (GeV/c)	Energy	Prod. Angle	
@ 0 mrad prod. angle	(GeV/c)	(mrad)	
+180	+120	0	
	+100	-5.46	
	+80	-13.36	
+20	+10	-1.58	
	+20	8.58	
	+6	-15.13	
-250	-100	-0.33	
	-200	8.06	
	-120	2.15	
	-60	-10.23	

The target station

... Wobbling - T4 target

Example 2: **H6** P0 beam OFF 5.6 mrad primary protons in H8 – "micro-beam" B1 H6 secondary beam **T4** B3T θ_{p6} <11.2 mrac θ_{T4} 14 mrad 5.250 m 17.20 m

H8

Summary

The target station

- the target box:
 - the target itself: thin plate, ~2mm vertical, ~160mm wide, variable length
 - intensity monitors: TBIU (upstream) , TBID (downstream)
 - wobbling magnets: B1, B2 upstream of target, B3 downstream
- beam TAXs : Target Attenuator

Safety - Survey

- survey (monitor) the current in the "wobbling" magnets and the position of the TBIU, TBID monitors
- for planned changes to the target station magnets (wobbling changes) a manual INHIBIT signal for the extraction has to be set

Wobbling changes

- initiated by the EA physicist upon the user requests
 - presented and discussed in the EATC meeting, documented in the minutes
 - performed by the operators, re-tuning of the the beam lines after the wobbling changes is often required

Particles and beams

Secondary beams

- transport particles particles directly produced in the primary targets
- three modes: HR, HT, FM
- energy and polarity depending on the wobbling setting

Target "wobbling":

- advantages:
 - several beams per target are available
 - flexibility of production angle and secondary beam energy
- drawback:

beams

and

articles

Δ

- introduces coupling between beams: e.g. P0 + H8 + H6, H2 + H4
- changes are difficult to agree and schedule

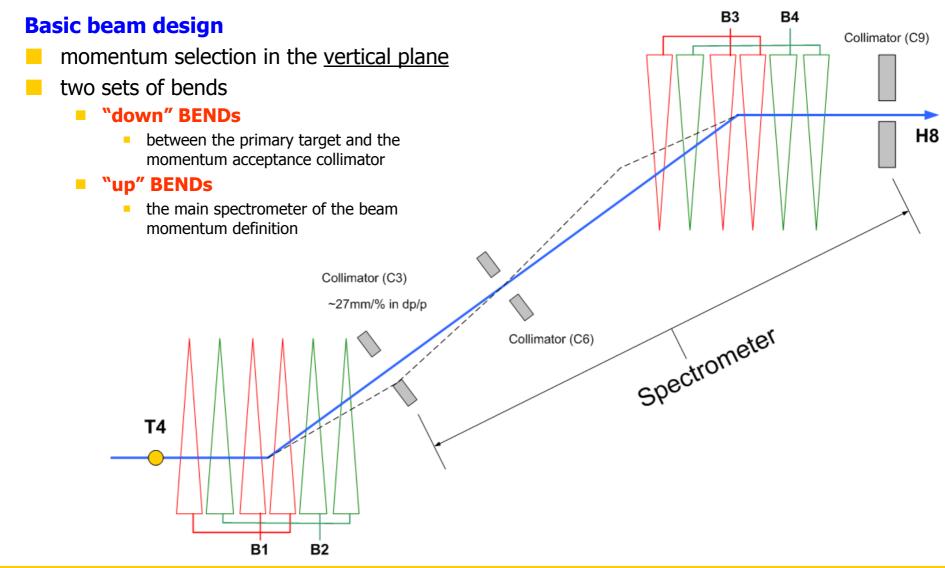
but the users (in particular the LHC detector calibration tests) demand a frequent change of beam energy and particle type

solution: Tertiary beams

Tertiary beams

Transport particles produced from the decay or after interaction with matter of secondary particles

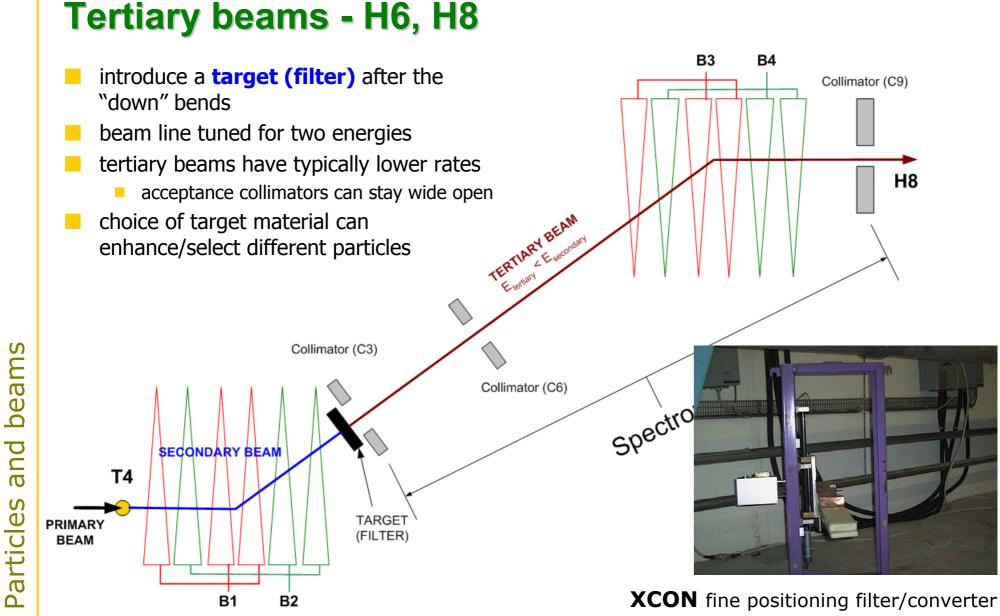
Allow more flexibility (independence) of the users in different beam lines


- keep longer periods with the same wobbling setting
- use mainly the filter mode optics to avoid confusion

Produced in two distinct ways:

- H6, H8: use a second target (filter)
 - beam line tuned for two energies:
 - **E1 (high energy)** : from the primary target until the filter
 - $\rightarrow\,$ momentum selection by the "down" vertical BENDs
 - **E2 (< E1)** : from the filter until the experiment
 - \rightarrow momentum selection by BEND-3 and BEND-4 (up vertical bends)
- **H2, H4:** from the **conversion** or decay of secondary neutral particles

tertiary muon beams of well defined momenta are produced by stopping pions in a closed collimator before the last bending magnets of the beam line


Secondary beams in EHN1 - reminder

beams

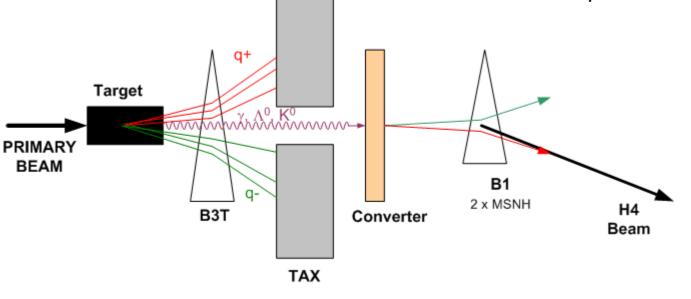
and

Particles

ie-spstraining

Tertiary beams - H2, H4

use the B3 magnet of the wobbling as sweeping magnet

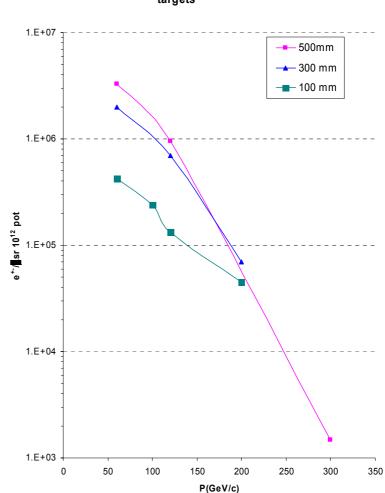

- charged particles are absorbed in the TAX
- neutral particles go through and hit the converter

note:

 neutral particles can have zero or non zero production angle

use the **converter**

- γ on Pb (CONVERTER=LEAD): to produce electrons (e⁺, e⁻)
- COPNVERTER=AIR (no converter) to let K⁰, Λ⁰, to decay
 - $K^0 \rightarrow \pi^+ + \pi^-$
 - $\Lambda^0 \rightarrow p + \pi^-$
- use **B1 of the beam line** to select the charge and particle for the tertiary beam to the experiment


Electron beams

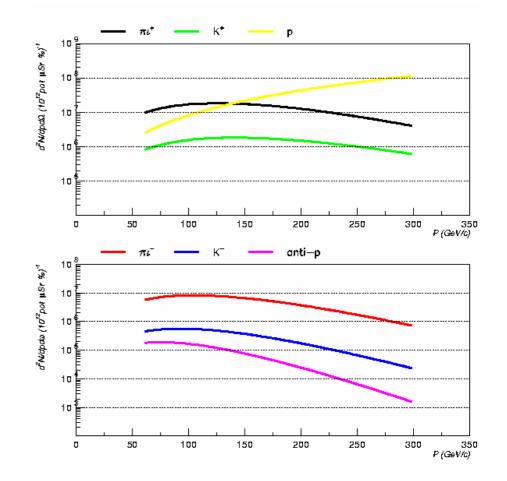
Secondary beams

- electrons produced at the primary target
 - rate goes down with energy increase
- longer targets help electron production
 - rate ~proportional to target length
- at high energies (≥120 GeV/c) can be separated from hadrons by synchrotron radiation
- mixed beams pion (hadron) contamination for lower energies
 - user CEDAR or treshold Cherenkov counters for tagging

Tertiary beams

- H6, H8: use Pb as secondary target
 - few mm, or ~1-2 radiation lengths (X0)
 - radiation length: distance in matter where
 - electrons loose ~1/e of their energy
 - hadrons loose ~nothing
- H2, H4: electrons from photon conversion
 - high purity beams!

Absolute electron/positron production rates from Be targets


Hadron beams

Secondary beams

- hadrons produced at the primary target
- for positive sign beam a good fraction of the total hadron rate is protons
- using an absorber (~1-2 X₀ of Pb) in the beam we can eliminate any electron contamination

Tertiary beams

- **H6, H8**: use secondary target of Cu, (CH)_n
 - ~ 1 interaction length λ_{I}
 - <u>interaction length</u>: characterizes the average longitudinal distribution of hadronic showers
 - a high energy hadron has 1-1/e probability to interact within one II
 - $\lambda_{\rm I} >> X_0$ for most of materials
- **H2, H4**: hadrons produced in the decay of neutral mesons
 - $\Lambda^0 \rightarrow p + \pi^-$, $K^0 \rightarrow \pi^+ + \pi^-$

Particle production by 400 GeV/c protons on Be targets, H.W.Atherton et. al.

Particles and beams

Muon beams

Secondary beams

- muons produced directly at the target area
- muons produced by the decay of (mainly) pions
 - muon momentum: 57-100% of the parent pion momentum
- to produce a pure muon beam for the experiment, is enough to close out of beam axis the last collimators of the beam line
- closing the collimator upstream of the last bend of the line we can obtain momentum selected muons
- rule of thump: muons in a 10×10cm² trigger represent ~1% of the hadron/pion flux
 - there is another $\sim 1\%$ in a cone about $1 \times 1m^2$ around the beam axis

Tertiary beams

muons present only for tertiary beams in the energy range 57-100% of the secondary beam momentum

Beam tuning

Aim

- deliver good quality of beam to the experiment!
 - sufficient rate, spot size, particle purity,...
- is needed each time we change energy/wobbling/user

Assumption

- start from an already prepared beam file by the EA physicists
 - be sure it corresponds to the present wobbling setting
 - be sure it can fulfil the user requirements
 - typically the users know "their" files, but good to check it yourself too!!!

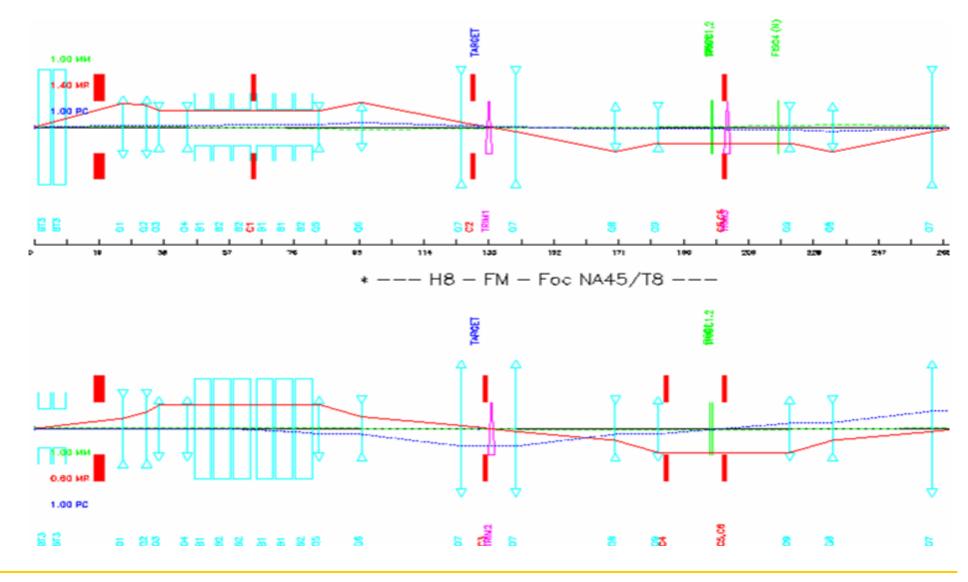
The first steps

- consult the logbook of the beam line
 - most of the files have been used already in the past
 - new files represent minor variations of existing files
- treat each plane independently
 - start with the vertical plane which is the most important to get the beam to EHN1
 - select your observation point
 - a scintillator counter close to the end of the beam line
 - provided the beam can reaches it!!

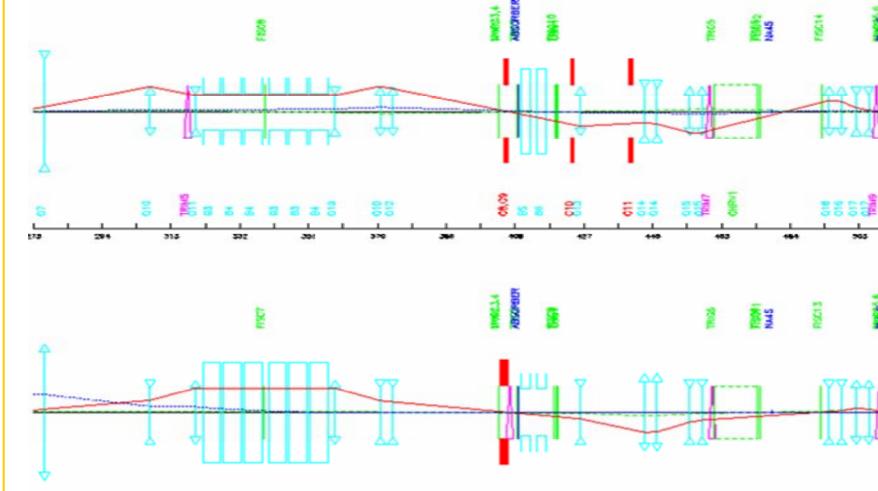
... Beam tuning – EHN1 beams

Vertical plane

- close H-acceptance collimators to reduce the rate
- close the momentum defining collimators
 "C3" and "C9"
- scan the current of the "down" BENDs to get the maximum rate
 - <u>never</u> touch the current in the "upper" BENDs otherwise the beam momentum changes
- check beam profile at various places between the "down" and "up" BENDs
 - use the available TRIMs to center the beam
- select a scintillator counter close to experiment to measure
 - use the TRIMs to steer and center the beam to the experiment


Horizontal plane

- close the V-acceptance collimators to reduce the rate
 - open the H-acceptance ones if previously closed!
- scan the current of the BEND-1 magnet if present (H2, H4, H6 beams) to get the maximum rate
 - close the collimator at the first focus point, typically "C2"
- check beam profile at various places in the tunnel
 - use available TRIMs to center the beam
- check beam profile at the experiment
 - use the last BENDs and the available TRIMs for steering


Note:

- you can use the Experimental scalers but be sure you know to what they are connected/measure
 - don't always trust them, particular for ions!

... Beam tuning – H8

Operational aspects

88

5

2

965

0.00 NN

9.50 N

982

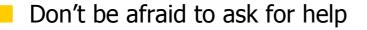
... Beam tuning – Watch out!

- electrons do not like material!
 - remove triggers or other detectors from the beam line, otherwise you may simply kill the whole beam
 - be careful when you try to measure/monitor things, since you may disturb the users
 - referring to logbook is fine but
 - be sure you are comparing apples with apples
- follow the particles, consistent particle rates
 - use as much as possible normalized rates: rate/pot
 - monitor beam losses, be sure you are looking at the beam not at its halo
 - similar rates at different places along the beam line
 - scintillator counters are typically \emptyset = 100mm but NOT ALL; Exp. Scalers can vary a lot!

switching beam files:

- secondary beams have high rates \rightarrow acceptance collimators close
- tertiary beams have low rates \rightarrow acceptance collimators wide open therefore:

switching from tertiary to secondary beam, load FIRST the collimators and then the magnets


21/03/2003

aspects

... Beam tuning

Important

- Thing before acting
 - To first order, all beam lines are quite similar
 - however there are some differences which need time to be familiar with
- Time is important for you and the users
 - there is always a limit to how good a beam can be; let the users decide
- Some users are quite experienced with their beam, and can do many things alone
- Good documentation is vital
 - beam line snapshot:
 - status of magnets/files/wobbling settings
 - status of collimators, target, absorber
 - rates in few counters (start, middle, end of beam line)

